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lo INTRODUCTION

A. Previous Work

It seems that this is a good moment to review how we got to where we

are. During the summers of 1987 and 1988 the Principal Investigator

(JDP) went to Marshall Space Flight Center to participate as a

NASA/ASEE Fellowship program working for Dr. S.L. Lehoczky in the

microgravity section of the Space Science Laboratory. Two reports and

one publication ensued (1-3). This was followed by a grant from the
Space Research Institute at Florida Tech and by four grants from

NASA/Marshall. Each grant was in excess of $30K and has supported

graduate students, post docs, and travel. The grants have enabled me

to be continuously supported from 1989 to the present date. Five more

publications, one Ph.D. thesis, four reports, and seven presentations

have resulted (4-19). In addition, three general interest articles have

appeared (20-22). The original direction of our work was to use and

extend the electron mobility work (as best exemplified by a long

program) of Dr. S.L. Lehoczky. The work has been enlarged to include
other areas as indicated below.

.

B. Current Work

The project has evolved to that of using Green's functions to predict

properties of deep defects in narrow gap materials. Deep defects are

now defined as originating from short range potentials and are often

located near the middle of the energy gap. They are important because

they affect the lifetime of charge carriers and hence the switching time

of transistors. We are now moving into the arena of predicting

formation energies of deep defects. This will also allow us to make
predictions about the relative concentrations of the defects that could
be expected at a given temperature.

The narrow gap materials Mercury Cadmium Telluride (MCT),

Mercury Zinc Telluride (MZT), and Mercury Zinc Selenide (MZS) are

of interest to NASA because they have commercial value for Infrared

detecting materials, and because there is a good possibility that they can

be grown better in a microgravity environment. The uniform growth

of these crystals on earth is difficult because of convection (caused by

solute depletion just ahead of the growing interface, and also due to

thermal gradients). In general it is very difficult to grow crystals with
both radial and axial homogeneity.
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IL DEFECTS IN COMPOUND SEMICONDUCTORS

A. Types of Defects (Native and Impurity)

We start by naming the defects that we will be considering (23). First we
consider intrinsic defects. There are two antisite defects: an anion on a

cation site Ac and a cation on anion site Ca. There are two vacancies,

an anion and a cation: (Va, Vc). Finally there are four anion and

cation tetrahedral site interstitials: A(Ta), A(Tc), C(Ta), C(Tc). By Ta we

mean a tetrahedral site surrounded by an anion, and by Tc we mean a

tretrahedral site surrounded by a cation. This adds up to eight intrinsic
native defects.

We let X denote an extrinsic impurity defect. Two of them are
substitutional: anion-site Xa and cation-site Xc. Two are interstitial:

anions X(Ta) and cations X(Tc). No other interstitital defect sites are

considered as they would be of lower symmetry (e.g. hexagonal) and

perhaps less likely. We summarize these in the table below.

Native Defect Symbol Number

Antisite Ac, Ca 2

Vacancy Va, Vc 2

Interstitial A(Ta), A(Tc) 4

C(Ta), C(Tc)

Impurity Defect Symbol Number

Substitutional Xa, Xc 2

Interstitial X(Ta), X(Tc) 2

B. Charge States

Defect concentrations depend on several factors which include
temperature, chemical potential, stoichiometry and the number of

extrinsic impurities. The concentration of defects also depends on the

reaction energies which in turn depend on the formation energies. We
will more carefully distinguish these two concepts later, but for now we

wish to mention that formation energies typically are of order 10 eV,

2



: :

i l

E
w

F

!
w

and that they depend on the charge state of the defect.

Charge states introduce complications and we follow Zunger (24) in

defining some needed terms. Let Vi be the impurity atom valence and

Vh be the host valence. The charge on the impurity (in units of the

magnitude of the electronic charge) will be called q. In the case of

compound semiconductors, we will have a host valence for both the

anions and cations (Vh a, VhC). The atomic number of the neutral

impurity will be denoted by Z.

The core electrons of the impurity number Z - Vi and are regarded as

inert. If we add n electrons to the impurity then q = -n and the

impurity has in effect Vi - q = Vi + n valence electrons. Vh of these are

used to satisfy host crystal bonds. These become inert. The remaining

N = Vi + n - Vh impurity electrons are not inert and Zunger labels
them as "active".

An example is helpful. Let us consider Mercury Cadmium Telluride in

which Zn replaces a Te and for which q - -1. Neutral Zn has a structure

of [Ar]3dl04s 2, but in the solid at a Te location we think of it as having

ionicity 2 and hence having the structure ...4s24p 2. [Ar] means the

electronic structure of the Noble gas Ar. Neutral tellurium has

structure [Kr]4d105s25p4 but in the solid we think of it as having an

ionicity of 2 and hence with the structure 5s25p 6. By Z n we will mean

[Ar]3d1°4s24p 3 which still has one less electron than the nominal host.

For this case N = 4 + 1 - 8 = -3 or we have three active "holes."

C. Concentrations

Most of the details are spelled out in a paper by Jansen and Sankey (23).

They show for example that,

[&][Ca] = exp - (1/kT)[Eu(Ac)+Eu(Ca)]

By [Ac] we mean the concentration of anions on cation sites etc. The

Eu(Ac) and Eu(Ca) are the formation energies of the two defects and

their sum is the reaction energy. For the intrinsic situations to be

discussed, there are seven equations which define seven reaction

energies. However, there are eight formation energies for the intrinsic

defects. The arbitrary constant can be fixed by adding a side condition

such as setting the cation and anion site vacancy formation energies

equal in their zero charge state.

3



A typical equation giving reaction energies is

Eu(Ac) + Eu(CA) =

Ela(N+I, N-l, Ac) + E,(N-1, N+I Ca) - 2E (N, N),

where for example, E,(N+I, N-l; Ac) means the perfect crystal bcc

supercell energy at the chemical potential _t with N+I anions and
N-1 cations and an anion on a cation site. The actual supercell energy

E,(N+I, N-l; Ac) depends on the computed supercell energy

Ec(N+I, N-l; Ac +n) for the charge state n by

E,(N+I, N-l; Ac) = Ec(N+I, N-l; Ac +n) + n(Ev+gt)

where Ev is the valence band edge and gt is the chemical potential

measured relative to Ev. In effect we are adding in the n electrons at

the Fermi level.

.=

4



me DEEP DEFECTS IN ONE DIMENSION

A. Model

The model we talk about has been well discussed by Economu (25). It is

convenient to summarize here because it shows easily how Green's
function calculations can be used to calculate defect levels. It will also

give us a model for explaining how we will use the ideas of Haldane

and Anderson to calculate the effects of charge states in more realistic

circumstances. The use of classical molecular dynamics to calculate the

effects of relaxation of neighbors has already been discussed(8).

!

Ho = Zmim > Eo < mi+VXnm[m >< nl, (ma.1)

- Z where Im> are Wannier like functions for site m, Eo is an atomic

energy and V characterizes the strength of hopping between sites.

The prime means to sum only over nearest neighbors n and m.

The substitutional impurity in the perfect lattice will be represented by

H1 = 1_> E < _], (IIIA.2)

where a is the change in "strength" of the binding at the impurity,

which assumed to be located at site _.

The unperturbed Hamiltonian Ho can be diagonalized by going to the

Bloch representation Ik>. The relationship between the two can be
written:

1 eikf
Ik > = _,Xt I_>, (ILIA.3)

where N is the number of lattice sites. We find

where

Holk > = Eklk >, (IUA.4)

Ek = eo + 2V cos(ka). (HIA.5)

This is the usual result for the tight binding approximation, with

nearest neighbor interactions in one dimension. The band is of width

5
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4V and is between Eo + 2V and ¢o - 2V.

B. Green Functions

Green's functions are readily used to predict energy levels when the
perturbation due to the substitutional defect is included. The

unperturbed and perturbed Green's functions are given by

G o (z) = (z - Ho)-I

G o (z) = (z - Ho - H1) -1

(roB.l)

(IIIB.2)

In order to deal with singularities, the possibility of z having a small

imaginary component is allowed.

It is easy to show that the two Green's functions are related by

G = [1 - GoH1] -1 Go.

One can rewrite this expression in terms of a T matrix as

G = Go + Go T Go,

where

Defining

it is then easy to show

T = H1 + H1 Go H1 + H1 Go H1 Go H1,

Go(g,g) = < glGolg >,

(IIIB.3)

(roB.4)

(IIIB.5)

(IIIB.6)

T= I_> a < tl, (IIIB.7)
1-¢Go(e,_)

As a general property we know the poles of T (or G) correspond to the

discrete eigenvalues of H. Calling these discrete eigenvalues Ep we
have

w

i (roB.S)Go(g,f, Ep) = _- .

From this, a plot of energy versus defect strength can be made.

It is beyond the scope of what we wish to do here, but it is easy to show

6



that the diagonal element of the unperturbed Green's function is

1
(IIIB.9)

In summary, the unperturbed Green function can be calculated once
the band structure is known. Localized functions are used in the

construction of the perturbed Harniltonian from which a relationship

can be derived between Go and the perturbation. The defect energy Ep,
can then be calculated using the above equation. In three dimensions,

similar results obtain. A tight binding Hamiltonian can be constructed
by a fit to the actual band structure calculations and from this the

perfect crystal Green's function is determined. This combined with a

specification of the defect potential determines the energy level in the

defect. The primary advantage of a Green's function calculation is that

it treats an isolated defect in an otherwise perfect crystal with the same

accuracy that one chooses to treat the corresponding perfect crystal.

z___

=
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IV. CHARGE STATES

A. Haldane and Anderson Approach in One Dimension

Each defect can exist in different charge states. The actual charge state

of the defect may be unknown. The location of the energy level (in or

out of the gap) is highly dependent on the charge state. This is

especially true for narrow gap semiconductors. If we are going to deal

with different charge states, we need to treat Coulomb interactions,

which we will do by using ideas from Haldane and Anderson(26). We

will use the one dimensional model to gain some insight to the more

general case.

The charge state splitting of a deep level in the band gap is the

difference between the ionization energies of the impurity with charge

q and the impurity with one or fewer electrons.

For the one dimensional model we had Go(GCEp)= _ and then by

using the expression for G we find the defect energy is

Ep = Co- _e2 +(2V) 2 , (IVA.1)

for the defect level below the band which is the only one considered.

In order to allow for different charge states we double the number of

states by allowing each state to have a spin degeneracy corresponding to

up or down spins.

c_ = +_2)" The perturbing Hamiltonian representing the

substitutional impurity becomes

(IVA.2)

Following the usual assumptions of Hjalmarson, we determine e by

¢ = [_(Eimp - Ehost), (IVA.3)

where Ehost is the host atomic orbital energy Co, and Eimp is the orbital
energy of the atom which forms a defect in the substitutional case.

Ehost and _ are fixed empirical parameters, and by the theory of

8
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Haldane and Anderson(26)

Eimp = a + bne, (IVA.4)

where a and b are also empirical parameters. Because the levels are

degenerate, we assume

me,+l/2 = me,-1/2 = me. (rVA.5)

The Feynman-HeIlman theorem can then be used to evaluate

me 0` kdl_>l2 _= ___EE (IVA.6)
c98 '

with known proportionality constants.

We find for one electron that

b OE

Eimp - Ehost = a - eo + _ 3-"e-' (WA.7)

and for two electrons

Eimp - Ehost = a - _o + b 3E (IVA.8)

Using b' as b/2 for one electron and b for two electrons we have

[8=13 a-co+ Oe;'
(IVA.9)

and

E = £o-_/£2+(2V) 2 . (IVA.IO)

These two equations can be solved self consistently. In one dimension

this can be carried out analytically, but in three dimensions the

situation is more complicated and the self consistency must be sought

numerically. In one dimension, the charge state splitting is easily

evaluated by looking at the difference of ionization energy in the one

and two electron cases. See Figure A. We find as expected that the

charged state interaction increases as the strength of the defect

9
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increases.

B. Short Range and Coulomb Forces in Three Dimensions

It is worthwile to give another simplified example before we report

results for real materials. We use an atom-like model with short range

and Coulomb interactions to help us understand more about the

relative importance of each type of interaction. A similar calculation

without the sort range interaction has been presented by Lee et a1(27).

Thus for one electron we assume,

H = -h2 V 2 + V(r) (IVB.1)
2m

where

V(r) = - Vo - --Y r < ro and 7 -1 = 4 n eo K, (IVB.2)
r

and where K is the relative dielectric constant. Assuming

= e -at, (IVB.3)

we obtain the approximate ground state energy by minimizing

(IVB.4)

Similarly for two electrons we write

h 2
H = =--(712 + V2)+ V(rl) + V(r2) + Vi(rl2)

2m
(IVB.5)

where

Vi (r12) = TK , (IVB.6)
r12

and V(r) is the same as for the one electron case. Assuming

= e-a(r,+r_) we obtain the approximate ground state energy by

10



minimizing

E(o_) = ; _gH_g dVldV2
J_g2dVldV2

(IVB.7)

Again the charge state splitting is obtained by looking at the

difference in the ionization energy for the one and two electron cases.

As an example we show the charge state splitting as a function of the

relative dielectric constant and well range for fixed well depth. See

Figure B. As the relative dielectric constant approaches zero, the effect

of the Coulomb tail becoms neglibile. Note that its effect flattens out

fairly quickly. The decrease with ro, the range of the short range

potential, is presumably because the electrons can more easily avoid

each other for large ro.

For our actual calculations, we start from the basic ideas of

Hjalmarson(28). We add the spin-orbit interaction for the II-VI

materials following the ideas of Kobayashi(29). We also adapt the ideas

of Lee(27) for charge states and follow the ideas of Haldane and

Anderson for locating them. In addition, we adapt the work of Li( 30, 31)

and Myles to include relaxation effects.

-Z'_.
z

Just as in the one dimensional case, the defect potential, the deep

energy level and the charge density associated with the neighborhood

of the impurity are determined self consistently. A sp3s * tight binding
model for electronic band structure with MCT treated in the virtual

crystal approximation was used. As in all of these calculations, the

chemical trends are expected to be much better predicted than actual

exact energy levels. See Figure 1. Note that the effects of different

charge states can be to move levels out of or into the band gap. Because

our band gaps are very narrow, predicting whether the defect energy is

in or out of the gap is very difficult. Relaxation, different charge states,

or even different band structure calculation can change the position of

the energy levels by more that the value of the band gap energy. Thus

we have some confidence in our chemical trends predictions but not in

absolute energy of the defect. More details follow.

C, Results for Realistic Models (no relaxation, relaxation, and

relaxation plus different charge states)

I. Introduction

11
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As already mentioned, the charged-state splitting of a deep level

in the band gap is the difference between the ionization energies

of the impurity with charge q and the impurity with one or

more fewer electrons (or holes). That is, the charge-state

splitting equals

AE = Ec - En, (IVC.1)

where Ec is the deep level produced by an impurity in the
charged state and En is the deep level produced by the same

impurity in the neutral state.

The ionization energy of an impurity in a semiconductor is
defined as the energy required to remove an electron (or hole)
from the occupied deep level to the conduction (or valence)
band.

The charged-state splitting of a deep level is a many-body effect

which results from the Coulomb interactions among electrons.

In simplified one-electron theories, the defect potential of an

impurity is charge state independent since the theory ignores

the interactions among electrons. However, in many electron
theories or in effective one-electron theories of the mean field

type, such as Hartree or Hatree Fock models, the defect potential

is charge state dependent. Therefore, to study the effects of

charged state splitting of deep levels we must use many-body or
mean field theories.

We have used the Hjalmarson one-electron deep level theory to

study the electronic properties of deep levels in many different

semiconductor materials(8). This simple theory gives good

chemical trends of deep levels for many different kinds of defects

in narrow gap semiconductors. But one of the disadvantages of

this theory is that the charged-state splitting of deep levels is

ignored since the effect of electron interactions are not included.

However, we can combine Hjalmarson deep level theory with

Haldane and Anderson model of Coulomb effects(26) to study

the charged-state splitting of deep levels. The use of the Haldane

and Anderson model enables us to include many-electron

effects, while retaining much of the simplicity of Hjalmarson's

theory. This idea has been successfully utilized by Lee, Dow, and

Sankey to study charged-state splitting of deep levels in Si(27), by

Sankey and Dow to treat interstitial levels in Si(32), and by Myles

to treat substitutional impurities in MCT(31).

12
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We want to use the same idea to study the effects of charged-state

splitting of deep levels in narrow gap semiconductors. We will
focus on the materials MCT (Mercury Cadmium Telluride),
MZT(Mercury Zinc Telluride), and MZS (Mercury Zinc
Sellenide).

2. Theory

As is well known, the presence of a point defect impurity
breaks the translational symmetry of a perfect crystal and
intoduces a perturbation into the one-electron Hamiltonian.

The Schrodinger equation is

(Ho + V) I¥ > = E hg > (IVC.2)

The defect energy level E in the band gap of a semiconductor is

given by non trivial solutions of the corresponding
determinantal equation

(I-G°(E)V) I_> = 0 (IVC.3)

Here G°(E)= (E-Ho) -1 is the Green's function of the host crystal.

In Hjalmarson's theory, the host crystal Hamiltonian H o is given

by Vogl's band structure model as(8)

Ho = £(liaR > E a < iaRl+ljc_ 1> Ec < jc_:1) +

_['iaR, v_C < jc_ll+h.c.]

(IVC.4)

where a and c refer to anions and cations, E_ and E_ are on site

parameters and V ac characterizes the nn interaction.

The defect potential is given by(8) (anion site)

V = ]_Vi = ]_]iaR > Ui < iaRI (IVC.5)
i i

where i can be s, p or s* (for (4) or just s and p for (5))

13
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Ui- ]3i(Eimp - Ehost) ; (IVC.6)

where Eimp and Ehost are, respectively, the defect and host atomic

orbital energies for states of symmetry i, and _i is an empirical

parameter. In the simplest approximation, Eip is charge state

independent. To include the effect of charged-state splitting of
deep levels, we have to use Haldane and Anderson's model to

compute the defect potential V.

The problem of determining the deep level energy E for a given
charged state then has two parts: (i) finding E as a function of V

by solving the determinant equation for a known Ho; (ii)

determining the defect potential V for an appropriate charged
state using Haldane and Anderson's model. Since (i) has been

discussed in detail elsewhere(8), we only explain (ii) here.

Following Haldane and Anderson(26), for a free atom of ion in a

given charged state, the atomic-orbital energies or ionization

potentials in different charge states are given by

Eso({na})=E°+UssX'nso'+Usp Z np o'
(_' jz(_' )

(IVC.7)

(IVC.8)

where c_is the spin (1" or ,[,), i, j = x, y, or z and the prime on the

summation indicates that the self-interaction (i = j and / or c =

o") is excluded, nsa and np, a are the occupation numbers (0 or 1)

of the s orbital and Pi orbitals of spin a, respectively. 0_ is one of
the eight possible spin - orbitals

((z=sT, s,],,px'_,px,],,py$,py,[,,pz'P, or pz$). {n_} is a collective

set of occupation numbers. For example, if an atom has four

outermost electrons, the collective set of {not} is

ns'[',ns,[,,np'[', and rip,l,. The parameters Uss,Upp,Usp

represents the Coulomb repulsion between electrons in the same

atom. The values of E s°,Ep,Uss,Upp° , and Usp have been

determined by Sankey and Dow for numerous atoms in Periodic

14
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In the solid, we assume that the electronic energy of an atom is

the same function of occupation numbers nsa and npia with

the same empirical parameters, but the n_ and npics are not

necessarily integers. As is well known, a point defect, in a

tetrahedral site of a zinc blende material, has a point group of Td.

A deep level produced by such a defect can have either non-

degenerate A1 (s-like) symmetry or triply degenerate T2 (p-like)

symmetry. As suggested by Kobayashi, Sankey and Dow(29),

including spin in the band structure but neglecting spin-orbit

effects of the defect simply doubles the degeneracy of each level.

That is, including spin in the calculation, we obtain two-fold

degenerate A1 levels and six-fold degenerate T2 levels. Due to

the degeneracy, we have nA1 = ns_s and nT2 = np.cs for either

spins a. Therefore we can rewrite Eq. (7) and Eq. (8) as follows:

EA, = Es° + Uss nA, + 6Usp nT2 (IVC.9)

ET2 = E_ + 5Upp nT2 + 2Usp nA, (IVC.10)

where nA1 and nT2 are occupation numbers of an electron on

appropriate levels, and the self-interactions are excluded.

The spin-orbital occupation number n, (_ = A1 or T2) contains

contributions from both the valence band and the deep levels.
can thus be written in the form

It

(wc.n)

where n_ is the contribution from the redistribution of electrons

in the valence band and n d comes from the occupied deep

levels.

The valence-band portion of n, can be written as

n_ = -_ooF(E)D_.(E)dE (IVC.12)

where (at zero temperature) F(E) is unity if the one-electron state

15
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of energy E is occupied and zero otherwise. D,(E) is the local

density of states for the spin-orbital _t, and we have taken the

zero of energy at the valence band maximum. D,(E) is related to

the Green's function of the host crystal, GO(E) and the defect

potential V as follows

D(E) = <gdp(E)l_> = -(11_)1m

< _t[G(E)I_t > = -(1/_)Jm < _tl[1- Go V] Go lgt >,(IVC.13)

where G(E)= [1-Go(E)V]-IGo(E) is the Green's function

including the defect, and I_t> = lia(s > is the localized basis

orbitals which H o is based on. Replacing Eq. (13) into Eq. (12)
we have

1 imlOoo F(E) < gtlG(E)lgt > dE_ (IVC.14)

where < gtlGl_t > is the diagonal element of Green's function

G(E).

The contribution of the deep levels to the occupation number
can be shown to be

n d = Y.I< _tlcoi>l 2 , (WC.15)
i

where i is the number of electrons on an appropriate state, (A1 or

T2) and Iq_i > is the defect wave function of an electron on an

appropriate spin-orbital state. Considering the degeneracy, we
have

nA1 d = kI< Allq_ > 12 , (WC.16)

where K can take a number among 0 to 2 depending on how

many electrons are on the A1 level, and

nT2d = ml< T2I '>12, (IVC.17)

where m can take a value among 0 to 6 depending on how many
electrons are on the T2 levels.
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It can be proved that(33)

3E , (IVC.18)

where U_ is the diagonal element of defect potential V. Ifwe

ignore the effectsof latticerelaxation,we can prove that

1

U_ = _aBa' (IVC.19)

where Gala is the diagonal element of the Green's function GO(E)

for an appropriate state. Therefore

and

8E =_Ga_

8U_ _ c,_.'
_Gaa

I<.l >l
=- v __1.L '

(IVC.20)

(IVC.21)

Using Eq. (21), Eq. (16) and Eq. (17) can then be written as

and

(IVC.22)

(IVC.23)

Including the effects of lattice relaxation in the calculation can

also be done (see Ref. 33). From Eq. (14) and Eq. (18), it is obvious
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that the occupation number n_ is dependent on deep level

energy E and the defect potential V. In turn, the spin-orbital

energies of a defect in the solid Ei(i=A1 or T2) in Eq. (9) and Eq.

(10) are also dependent on E and V.

Now we can modify the defect potential V in Hjalmarson's
theory and include the effects of charged-state splitting in our

calculations. Instead of using atomic-orbital energies to compute
Ui in Eq. (6), we should use spin-orbital energies in Eq. (9) and Eq.
(10) to compute Ui. That is now

UA_ = _A,{[E ° + Uss hA, + 6Usp nT2] - E_st}, (IVC.24)

and

Therefore Ui is charged state dependent. It is worth pointing out

that even though the off-diagonal elements in defect potential V
keep in the same form, since for different charged states, the
bond length between a defect and the surrounding host atoms is
different, the off-diagonal elements of V are also charged state
dependent(8).

Eqs. (14) and (18) give the dependence of the occupation numbers

n, on the defect potential V and the deep level E. Conversely,

Eqs. (24) and (25) give the dependence of V on the n,. These
equations form a set of coupled equations which must be solved

self-consistently for the deep level energy E, defect potential V,

the occupation number n,, and the spin-orbital energies E,. For
a particular impurity, a scheme for obtaining self-consistent

solutions for these quantities is implemented as follows: For a

trial defect potential V which can be set to zero initially, Eq. (2) is

solved for the deep level energy E. With this E and V, the

occupation number n_ are computed from Eq. (14), Eq. (22), and
Eq. (23). These occupation numbers are then used to compute

the spin-orbit energies from Eqs. (9) and (10). These energies are

used to compute new defect potential V from Eqs. (24) and (25).

This procedure is repeated iteratively until self-consistent is
obtained.

As an example of the calculations, we consider a Zn atom

substituting for Te in MCT for three charged states Zn0, Zn-,

18



_i,.a

t

=_

F 7

2

E_

r_
i!

Lq

t_

Zn +. The neutral impurity state Zn0Te has four extra electrons

relative to the host. The singly negatively charged impurity

Zn-Te has five extra electrons and the singly positively charged

impurity Zn+Te has three extra electrons. These extra electrons

are expected to fill A1 (s-like) level first and then T2 (p-like)

levels. In all these three charged states, we have a full A1 level

and an unfull T2 level.

The occupation number nla is computed first, n_ can be

computed using Eq. (14) with V being zero initially. Then G(E) =

Go(E) where Go(E) is the host Green's function which can be

computed using the same method we used before, n d can be

computed using Eqs. (22) and (23). For nd., k is equal to two in

all three charged states, and for nd%, m is equal to one, two, and

three corresponding to three different charged states Zn +, Zn 0,

and Zn'.

Then the spin-orbital energies E_ are computed using Eq. (9) and

Eq. (10). For a Zn atom, the values of the parameters are

E° = -18.0,E_ = -11.9,Uss = 10.0,Upp = 7.8, and Usp = 8 .4.(32) The

diagonal elements U_ of the defect potential V can then be

computed using Eqs. (24) and (25). In the equation, Ehost are also

parameters determined by Sankey. For a Te atom, Ehost of A1

state is -19.0, and Ehost of a T2 state is -9.8(32).

If we ignore the effects of lattice relaxation for different charged

states, we can then use U, to construct a new defect potential V,

and these new V, in turn, can be used to compute n_. We

assume that the self-consistency is achieved if

AV = A, / T, / < 10-3. (WC.26)
2

To study the shift of deep levels due to the different charged

states, we first compute the deep level energies E as a function of

UA1 for A1 deep levels and as a function of UT2 for T2 deep

levels. For different charged states, we compute the

corresponding UA1 and UT2 using the method discussed above.

The charged state splitting can be obtained from the difference

between the deep levels corresponding to different charged
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states.

The results of calculations for our example above are as follows:

Z0: UA1 = 14.11, UT2 = 10.30

Z-: UA1 = 15.74, UT2 = 11.11

Z" ": UA1 = 17.02, UT2 = 12.03

Z+: UA1 = 12.39, UT2 = 9.17

Z++: UA1 = 10.67, UT2 = 8.36

Since the anion - site, s-like deep levels produced by Zn impurity

in MCT are far away from the band gap, we just discuss the

charged-state splitting of anion-site and p-like deep levels. The

detail discussion about the results will be given in next section.

The effects of lattice relaxation can also be calculated

simultaneously. To do that, for different defect potential V, we

compute the corresponding defect bond length using the method

we discussed before(33). In turn, this will change the defect

potential V. Therefore we need to include lattice relaxation

when doing the calculation self-consistently. In many cases we
found that the calculation of the lattice relaxation and the

calculation of the charged-state splittings can be separated.

3. Results

Based on our theory, the electronic properties of deep levels in

narrow gap semiconductors can be studied in three different

stages. First, we focus on the chemical trends for the ordering of

deep levels. To simplify the problem, the effects of lattice

relaxation and the effects of charged state splitfings are ignored.

In the second stage we consider the relationship between deep

levels and the lattice relaxation of the deep levels. The effects of

lattice relaxation on deep levels are examined carefully. This

work has been reported in the "Semi-Annual Report" (11) and

the "Final Report" (12) last year. Here we consider charged

state splittings of deep levels. The theory has been discussed in
the last section.
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The results from these three different stages are summarized in

Fig. 1 for substitutional impurities of Zn and Mg in MCT. One

can see from the figure that ignoring the effects of lattice

relaxation and the effects of charged state splittings, an impurity

Zn will produce a deep level in the middle of the band gap, and a

deep level is formed in the lower half of the band gap by Mg.

However, including the effects of lattice relaxation on deep
levels, the deep level produced by Zn is shifted up to near the

conduction band edge and the deep level formed by Mg is

moved to the middle of the bad gap. If we assume that these two

levels are formed by a neutral charged state (since we ignore the

effects of charged state splittings in the second stage calculation),
then we can use the method discussed above to compute the
energy shift due to the charged states. It can be seen from the

figure that the deep level produced by a singly negatively

charged impurity Zn- is shifted to the conduction band. The

energy shift between the charged state and the neutral state is

about 0.12 eV. On the other hand, a singly positively charged

impurity Zn + will move the deep level to the valence band.

The corresponding energy shift is about 0.11 eV. Similar results

can be found for impurity Mg. The neutral charged state Mg0 is

predicted to produce a deep level in the middle of the band gap.

However, the singly negatively charged Mg- moves the level up
to the conduction band with a shift about 0.08 eV, and a singly

postively charged Mg+ moves the level down to the valence
band with a shift about the same amount. One can see from the

figure that the effects of charged state splittings on deep levels
are larger than the effects of lattice relaxation. This is true from

our calculation for all defects of interest. Typically, the range of
an energy shift due to the effects of lattice relaxation is 0.02 to

0.05 eV. However, the range of the energy shift due to the effects
of charged state splittings is about 0.95 to 0.15 eV. Because the

band gap of a narrow gap semiconductor is typically 0.1 eV,

which is the same order as the charged state splittings, to predict

a deep level formed by an impurity in the band gap, one must

indicate the charged state of the impurity. It is easy to see that

including the effects of charged state splittings of deep levels is

very important to improve the deep level theory.

The results of charged state splittings of deep levels due to

substitutional impurities in MCT, MZT, and MZS are

summarized in Table 1. Five different charged states for each

impurity, namely doubly positively charged state (++), singly
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positively charged state (+), neutral charged state (0), singly

negatively charged state (-), and double negatively charged state

(- -) are considered. These different charged states have the

meanings as follows: consider the charged states of impurity Zn

substitutional for Te in MCT. Zn of any charge state has a deficit

of four electrons compared with the Te it replaces. Two of these

electrons will fill the s-like level, and the other two will fill the

p-like level. Thus for Zn 0, which is what we call Zn with two

more electrons than in the neutral atomic state, the s-like level

will be full, and the p-like level will be partially full. Since Zn-

has one more electron than Zn0, this electron will go to the p-

like level. On the other hand, since Zn + has one less electron

than Zn 0, there is only one electron in the p-like level instead of
two. For Zn with two less electrons than in the neutral state

there will be a filled s-like level and an empty p-like level.

Other impurities can be discussed in the same manner.

Even though the necessary information for calculating deep

levels in all different situations (anion site, s-like; anion site, p-

like; cation site, s-like; and cation site, p-like) are given in Table

1, we are only interested in anion site, p-like and cation site, s-

like levels since the deep levels in the other two cases are far

away from the band gap. Therefore, only anion site, p-like and

cation site, s-like deep levels are considered in Table 1. Anion

site, p-like levels produced by various charged states of Zn, Mg,

Cd, and Hg, and cation site, s-like levels produced by S, Se, N,

and Br in MCT are computed in the Table. The results of anion

site, p-like levels produced by Zn, Mg, and Cd in MZT, and Zn,

Mg, and Be in MZS are also given in the Table. In Table 1, the

second column and the third column represent the impurity

potential energy with appropriate symmetries (s-like or p-like)

for different charged states of each impurity.

In the table, the fourth and the fifth column give the differences

of impurity potential between the two charged states with one
more or one less electron. The last column of the table shows

the positions of corresponding deep levels relative to the band

gap. For example, in the second row of the table, the impurity is

Zn, and the charged state is singly negatively charged state (Zn-).

The impurity potential of Zn- in s-like and p-like states are 15.74

eV and 10.19 eV, respectively. The differences in impurity

potential between Zn- and Zn0 are 1.63 eV and 0.72 eV,
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respectively. The position of the anion site, p-like deep level

formed by Zn- is predicted at 2.1 Eg, where Eg is the energy band

gap. Typically, the energy band gap is 0.1 eV, therefore, if a deep

level is 0.9 Eg, it indicates that the deep level is in the band gap

and below the conduction band edge by 0.1 x Eg eV. Therefore,

the deep level formed by Zn- at 2.lEg means that the deep level
is at 2.1 x Eg eV, and is resonant in the conduction band. The

charged state splittings AE can be obtained from the difference of

deep levels between any two charged states for a particular

impurity. For example, the charged state splitting between Zn-
and Zn 0 is 0.12 eV, and between Zn 0 and Zn + is 0.11 eV.

The deep levels given in Table 1 are also shown in Fig. 2 to Fig.

5. In these figures, the bottom of the energy gap is at 0.0 eV and

the top is at 0.1 eV. The deep levels formed by particular

impurities with certain charged states are shown in these figures.

Fig. 2 shows the anion site, p-like levels in MCT, and Fig. 3
shows the cation site, s-like levels in MCT. Fig. 4 and Fig. 5
represent the anion site, p-like levels in MZT and MZS,

respectively. Some interesting observations can be found from

these figures.

First the negatively charged impurities always form deep levels

above those formed by the same impurities with neutral and

positively charged states. The results can be explained

qualitatively as follows. When the initially neutral impurity is

given a single negative charge (an extra electron), the Coulomb

repulsion of the extra electron with those already present will

increase, as will the spin-orbital energy for the impurity,
therefore the deep level energy will also increase. On the other

hand, if the impurity is given a single positive charge by

removing an electron The analagous resulting energies will
decrease.

Second, it can be seen from the figures that the energy shift of
the deep levels is roughly a linear function of the charged state

for a particular impurity. That is the energy shift due to one

more or one less electron in an impurity is roughly the same.

For example, in Fig. 2, the energy shift from charged state Zn0 to

Zn" is 0.12 eV, and from Zn" to Zn" "is also 0.12 eV. On the

other hand, the energy shift from Zn 0 to Zn + is 0.1 eV, and from

Zn + to Zn ++ is also 0.10 eV. In the case of impurity Mg, the
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energy shift between charged states Mg ++, Mg +, Mg 0, Mg', and

Mg- -, are 0.07 eV, 0.07 eV, 0.08 eV, and 0.08 eV, respectively.
That is, for different impurities, the energy shift between the
same charged states may be different, but the energy shift

between different charged states for the same impurity should be
close.

Third, the chemical trends in the ordering of deep levels

associated with different impurities for the same charged states

are essentially unchanged. For example, the deep level produced

by Zn0 is above that produced by Mg0, and the deep level formed

by Zn- is also above that produced by Mg-. However, the

ordering of the deep levels associated with different impurities

for different charged state may be changed. For instance, the

deep level formed by Mg- is above that formed by Zn0.

Table 2 summarizes the results for the interstitial impurities in

MCT, MZT, and MZS. The meaning of each column in the
Table is similar to that in Table 1. Five charged states are also

considered for each impurity interested. One should notice that,

however, in the case of interstitial impurities, the meaning of a

neural state of an impurity is not the same as that of a

substitutional impurity. The number of electrons on a neutral

state of an interstitial impurity is the number of valence
electrons of the impurity as an atom. For example, a neutral

state of an interstitial impurity Zn 0 in MCT has two valence
electrons instead of four as in the substitutional case for Te in

MCT. These two electrons will be in the s-like deep level.

Therefore, we have a filled s-like level and an empty p-like. A

singly negatively charged state of Zn" has three extra electrons
and the third electron will fill the p-like level. On the other

hand, a singly positively charged state of Zn + has only one extra
electron. Same discussion can be used for other interstitial

impurities. The charged state splittings of an impurity can be

easily obtained from the differences between two deep levels
with different charged states.

Figs. 6-8 show the deep levels formed by various interstitial
impurities with different charged states in MCT, MZT, and MZS.
As before, the bottom of the band gap is at 0.0 eV and th top is at
0.1 eV. Inspecting these figures one can find that deep levels
formed by interstitial impurities with different charged states
have the similar properties as those formed by substitutional
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impurities. For example, the deep levels are roughly a linear

function of charged states; the negatively charged states have

higher energy levels than neutral or positively charged levels;

and the chemical trends of ordering of deep levels associated

with different impurities for the same charged states are

essentially preserved.

To illustrate these predictions, one can look at a specific example.

Let's consider self-interstitial impurity Cd in MCT. One can see

from Fig. 6 that the deep levels of five charged states formed by

Cd ranging from '++' to '- -' are -2.4 Eg, -1.2 Eg, 0.8 Eg, 2.3 Eg, and

3.0 Eg, respectively. The corresponding energy shifts are 0.12 eV,

0.14 eV, 0.15 eV, and 0.15 eV. The most negatively charged state

has the highest energy level. The energy shifts can be considered

as a roughly linear function of the charged states.

Comparing the results of Table 1 with that of Table 2, one can see

that the charged state splittings predicted for interstitial

impurities are slightly higher than those predicted for

substitutional impurities. For example, the charged state

splittings of the substitutional impurity Zn in MCT are 0.1, 0.11,

0.12, and 0.12 eV when the charged states are changed from '++'

to '- -'. However, the corresponding energies of the intersititial

impurity Zn in MCT are 0.2, 0.22, 0.22, and 0.25 eV. Similar

trends are found for other impurities. This is not surprising

because of the fact that the interstitial's deep levels are more

atomic than those of substitutional impurities.

The charged state splittings as a function of alloy composition x

can also be studied. Table 3 gives the results of charged state

splittings of anion site, p-like deep levels for Zn and Mg in MCT

for x =0.2, x = 0.3, and x =0.5. In the Table, AE is the charged state

splittings. As can be seen from the Table that, these splittings are
of the same order of 0.1 eV for different x, and tend to decrease

slightly with decreasing x.
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VQ FORMATION ENERGIES

Extraction Energy EE: This is the energy necessary to remove an atom
from a bulk lattice site to a free atom site at the surface. We have

assumed a Schottky defect which leaves behind a bulk vacancy [a

Frenkel defect puts the freed atom in an interstitial position].

This extraction energy EE is easy enough in principal to calculate via

EE = Ef - EI

where Ef = the total energy of a cluster of atoms with the central atom

removed plus the energy recovered by placing the freed atom on a free

atom surface site and Ei = the total energy of the cluster before removal
of the central atom.

For elemental semiconductors the vacancy formation energy is then

simply

EV = EE - Ecohesive

where Ecohesive is the bulk cohesive energy atom. For compound
semiconductors the situation is more complicated. We have extraction

a ¢
energies for both anions and cations (EE,EE). For average bonds, we

find a vacancy formation energy as given by

1 a E_)-Ecohesive.EV=_(EE +

We have already studied the electronic properties of defects in narrow

gap semiconductors, in some detail(8). As mentioned, of particular

interest in the nature of point defects, which consist of native
vacancies, antisites, and interstitials, and extrinsic substitutional and

interstitial impurities. One of the important predictions of the theory

is that all these point defects may form deep levels in the energy band

gap. Some kind of defects are easier to form in the band gap than other

kinds. The next logical question one may ask is "can we compute the

defect concentrations for a particular kind of point defect in a

semiconduction?" Although the defect concentration depends on
many factors such as stochiometry, temperature, chemical potential,

etc., in many processes, the concentration is governed primarily by the

defect formation energy. It is well known that the defect concentration
depends exponentially on the defect formation energy(28). Thus the
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study of defect formation energy is of essential importance.

Calculations of the defect formation energies for substitutional or

interstitial defects may be divided into two main categories. The first

type of approach is the cluster calculations, which deal with a finite

number of atoms around a defect. In this approach, the defect

formation energy can be modeled as

El= Et(defect cluster)- Et(perfect cluster), (V.1)

where E t (defect cluster) is the total energy of a cluster containing the

defect, and E t (perfect cluster) is the total energy of the host cluster

without the defect(34). The major disadvantage of such calculations is

that the results may differ because of the choice of a cluster size or due

to the boundary conditions at the surface of the cluster.

The second type of approach is based on the Green's function method,

in which the periodicity of the host crystal is fully accounted for. We

can still use the definition of the defect formation energy mentioned

above. However, in order to compute the total energy, a cluster from

the infinite crystal must be constructed. The idea of constructing a

cluster from the host crystal is as follows: Considering the crystal with

a defect, we start with one-electron Schrodinger equation. In the

Green's function method this equation is transformed into a matrix

equation, with a size determined by the size of the matrix of the

perturbing potential due to the defect. In our theory the size of this

defect potential matrix is used to determine the size of the cluster. If

we want to include the effects of the second nearest neighbors of the

defect in the defect potential matrix, the matrix has a size of 17 x 17 for

diamond and zinc-blende semiconductors. The corresponding cluster,

has a size of 17 atoms, which consists of a defect, four nearest neighbor

atoms, and twelve second nearest neighbors. The bonds at the cluster

edges are coupled to the infinite host crystal. That is, for the cluster

without the defect, we keep the same values of fight binding

parameters as in the infinite host crystal. For the cluster with the

defect, the defect potential matrix will be included. In this approach the

surfacelike states associated with the cluster boundary are then

eliminated. As a matter of fact, this whole idea has been used to

calclulate the deep levels in our previous work(8).

The total energy of a duster with or without a defect can be modeled by

E t°l = E el + E r, (V.2)
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where Eel is the sum of the one-electron energies in the occupied states,

and E r is the repulsive energy due to electron-electron repulsion and

ion-ion repulsion and contains the correction for double counting

contained in E el . E el can be computed as follows:

Eel = jE, Ep(E)dE, (V.3)

where Ef is the Fermi energy and p(E) is the electronic density of states.
In the Green's function method we have

p(E) = -llMT r G(E), (V.4)

where G(E) is the Green's function matrix. Therefore, Eq. (3) becomes

E el =-llmT rIE'E G(E) dE (V.5)
7¢

On the other hand, E r can be computed using Harrison's overlap

interaction model from a pair potential as(35)

E r = A' / d 4 (V.6)

where A' is a proportionality constant, and d is the defect bond length.

In order to compute Eel for a cluster without a defect, the host Green's

function matrix GO(E) is used, otherwise, the Green's function matrix

including a defect G(E) must be used. The computation of G°(E) and

G(E) has been discussed in detail in our previous work. We focus now

on how to determine the constant A'. From the Harrison model,

Er(d)= 21.3[h12 I 1 (V.7)
K LmJ lahld 4'

where Eh = (Es + 3_p) / 4 is the hybrid energy, and as and Ep are the

atomic energy of s and p states, respectively. K is an empirical constant.

Comparing Eq. (7) with Eq. (6), it can be seen that

A' 21"3Fh] 2 1
(v.8)
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There is another way to determine A' which is more natural and more

accurate. The constant A' can be determined from the equilibrium

position of an atom in a perfect crystal. The detailed discussion of the

problem has been made in our previous work(8). The basic idea is as

follows: The total force on an atom due to the surrounding atoms at
certain direction can be modeled as:

Fx a r (V.9)=F×+F x,

where Fax and Fr represent, respectively, the attractive part and

repulsive part of the force. For the host crystal in the absence of the

impurity, each atom is fixed at its perfect crystal equilibrium position
and it must be true that

Fax= -Frx ,

SO that Fx = 0. Since

(V.lO)

F r = - 3E---_r (V.11)
Ox '

if we take x along the bond length direction, we then have

F r = 4A' / d 5 = A / d 5. (V.12)

That is A' = A/4. Therefore, if we can determine A from Eq. (10), we
can then determine A' from the relation above.

As an example, let's consider the formation energy of a substitutional

impurity Zn for Te in MCT. As well known that this impurity can

form either s-like or p-like anion site deep levels in the band gap.

Therefore the formation energy in these two states should be computed

separately. Using the formula discussed above, the calculational results
are as follows:

EeI(eV) Er(eV) E_(eV) E_l(eV) E_)(eV) E_)(eV)

h.c. -25.72 2.66 -23.06 -10.16 1.74 -8.42

imp.c. -20.52 2.20 -18.31 -7.18 1.19 -5.99
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where h.c. means host crystal and imp c. means for the crystal with

impurity.

As before the formation energy is represented as

E f = Et(impurity cluster)- Et(host crystal).

From the results above, we have that

for s-like state, the formation energy is E f = 4.75 eV

for p-like state, the formation energy is Ef = 2.43 eV.

The results indicate that the formation energy for a Zn to form a p-like
deep level is much less than that for a Zn to form a s-like deep level.

We can conclude that a substitutional impurity Zn will most likely

form a p-like deep level than form a s-like level. In other words, the

concentration of impurity Zn which forms p-like levels should be
much larger than that of Zn which forms s-like levels.
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VII. APPENDIX

A. Some Brief Simple Facts

. Cations are attracted to the Cathode and are positive. For our
case examples are the Group II elements Hg and Cd.

, Anions are attracted to the anode and are negative. Examples
are Te and Se.

. As far as lowering the potential energy goes, cation sites
surrounded by negative ions tend to favor s-like levels (because

this keeps negative charges as well separated as possible). Anion

sites surrounded by positive ions tend to favor p levels which

spread the negative charge out to the positive sites. Of course,

covalent bonding and other effects can complicate this analysis.

o Presumably because they are realtively compact, cation sites tend

not to be affected by relaxation effects.

o For substitutional impurities, atoms of Group 1I and to the left

may replace anions (Group VI) and so according to the above
like to be p type. Examples are MgTe and Bese.

. Similarly atoms of Group VI and to the right may replace cations

(Group II) and so have neighbors which are negative and thus

tend to be s-like impurities.

. Substitutional sites are of Tetrahedral symmetry and interstitial

sites can be Hexagonal and Tetrahedral. For interstitials we only
consider Tetrahedral sites and name them in the same way as

substitutional sites. For example, cation sites are surrounded by
negative ions.

. For a point defect in a tetrahedral site of a zinc blende material,

the point group is Td. Such defects can have both non

degenerate A1 (s-like) and triply degenerate T2 (p-like) states.

1 For our calculations, free atom parameters plus adjustment for

being in the lattice define the diagonal part of the impurity
potential.

10. The off diagonal part of the impurity potential is defined by a
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11.

12.

13.

14.

constant determined by the host and the impurity, and by the
host interatomic distance and the distance db between the

impurity and its nearest neighbors. The distance dl, in the
relaxed state is determined by molecular dynamics.

In our calculations, chemical trends seem to be preserved even

though the aboslute energies are highly variable. For example,
for substitutional levels caused by Cd, Zn, and Mg, we find the
same order of levels in MCT, MZT, and MZS. As noted by Chen

and Sher (Phys. Rev. B _ 6490-6497 (1985)), the absolute location

of the energy level may depend sensitively on the band structure
and impurity potential. We also know it depends on relaxation
and charge states. Particularly for a narrow gap semiconductor,
the most we could hope to predict is chemical trends.

To standardize our calculation, we often use a band gap of 0.1 eV.

The corresponding x values are x(MCT) = 0.22, x(MZT) = 0.15,

and x(MZS) = 0.08.

The charged-state splitting of a deep level is a many body effect
which results from the Coulomb interactions between electrons.

The charged-state splitting of a deep level in the bad gap is the
difference between the ionization energies of the impurity with

charge q and the impurity with one fewer electron (or hole). The

ionization energy of an impurity in a semiconductor is defined

as the energy required to remove an electron (or hole) from the

occupied deep level to the conduction (or valence band). We
have used the ideas of Haldane and Anderson to approximately

evaluate the charged-state splitting.

Simply put, the formation energy of a defect is the energy of the

crystal with the defect less the perfect crystal energy. Defect
concentrations depend exponentially on formation energies.
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B° Selected references with titles and partial abstracts:

BI. Reviews

o A. Sher, M.A. Berding, M. van Schilfgaarde and An-Ban Chen,
"HgCdTe status review with emphasis on correlations, native
defects and diffusion, "Semicond. Sci. Technol. 5 (1991) C59-C70.
Printed in the UK.

Partial Abstract. The most vexing questions are about its

correlation state, several different experiments now suggest it is

highly correlated, but no theory predicts this result. The

calculations predict that the main native defects found in alloys
equilibrated at low Hg pressures are Hg vacancies, while at high

Hg pressures they are Hg intersitials, and, surprisingly, Hg
antisites.

. C.E. Jones, K. James and J. Merz, R. Braunstein, M. Burd, and M.

Eetemadi, S. HuRon and J. Drumheller, "Status of point defects

in HgCdTe," J. Vac. Sci. Technol. A 3 (1), Jan/Feb 1985, p. 131.

Partial Abstract. Intrinsic defects such as the mercury vacancy,
which is believed to act as a shallow acceptor, are less well

understood and suffer from a lack of characterization techniques

that can identify individual defects. Deep-level defects are

present with concentrations proportional to the shallow acceptor
concentrations. These centers often control lifetime and noise.

At present, the errors in this work are larger than the HgCdTe

band gaps, but the calculated trends are important.

3. Four Review Books

(a) S.T. Pantelides (Editor), "Deep Centers in

Semiconductors," Gordon and Breach, Switzerland (1992).

(b) Ming-Fu Li, "Modern Semiconductor Quantum Physics,"

World Scientific, Singapore, 1994.

(c) Waiter A. Harrison, "Electronic Structure and the

Properties of Solids," W.H. Freeman and Co., San
Francisco, 1980.

(d) W.A. Tiller, "The Science of Crystallization: microscopic
interfacial phenomena and defect generation," Cambridge
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University Press, 1991. "The Science of Crystallization:

macroscopic phenomena and defect generation,"

Cambridge University Press, 1991.

Relaxation

W. Li and J.D. Patterson, "Deep defects in narrow-gap

semiconductors," Phys. Rev. B 50 (20), 15 November 1994, p.
14903.

Partial Abstract. The compounds considered are mercury

cadmium telluride (MCT), mercury zinc teUuride (MZT), and

mercury zinc selenide (MZS). The effect of relaxation of

neighbors is considered for the substitutional and intersitial

cases. Although the absolute accuracy of our results is limited,

the precision is good, and hence chemical trends are accurately

predicted.

Wei-Gang Li and Charles W. Myles, "Deep-level wave functions

including lattice-relaxation effects," Phys. Rev. B 47 (8), 15 Feb

1993, p. 4281.

Partial Abstract. A tight-binding formalism for calculating the

wave functions associated with deep levels in semiconductors,

including lattice relaxation effects, is presented. This formalism

is an extension of the theory of Ren et al. [Phys. Rev. B 26, 951

(1982)] to include lattice relaxation.

Wei-Gang Li and Charles W. Myles, "Molecular-dynamics

approach to lattice-relaxation effects on deep levels in

semiconductors," Phys. Rev. B 43 (12), 15 April 1991, p. 9947.

Partial Abstract. Molecular dynamics is used to calculate the

lattice relaxation around an impurity, and its efects on the

associated deep levels are computed using a Green's-function
method.

Wei-Gang Li and Charles W. Myles, "Effects of lattice relaxation

on deep levels in semiconductors," Phys. Rev. B 43 (3), 15 Jan

1991, p. 2192.

Partial Abstract. A formalism for phenomenologically including

the effects of nearest-neighbor lattice relaxation on deep levels

associated with substitutional impurities in semiconductors is
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outlined and used to investigate such effects in GaP and Si. This

approach is an extension of the theory of Hjalmarson et al. [Phys.
Rev. Lett. 44, 810 (1980)].

Related to our Calculations

Charles W. Myles, "Charge state splittings of deep levels in

Hgl-xCdxTe," J. Vac. Sci. Technol. A6(4), p. 2675 (1988).

Partial Abstract. The charge state splittings of the deep levels

produced by a singly ionized, substitutional impurities on both

the cation (Hg/Cd) and the ion (Te) sites in Hgl-xCdxTe are

investigated using a Green's function formalism. In all cases

investigated, the splittings are found to be of the order of 0.1 to

0.2 eV and to decrease with decreasing alloy composition (x).

Seongbok Lee and John D. Dow, "Theory of charge-state

splittings of deep levels," Physical Reveiw B 31 (6), 15 March

1985, p. 3910.

Partial Abstract. The Green's-function method, with an

empirical tight-binding basis, is used to determine the deep

levels of the singly ionized and neutral impurities S, Se, and Te

in Si. The impurity potentials are determined self-consistently.

Otto F. Sankey and John D. Dow, "Theory of tetrahedral-site

interstitial s- and p-bonded impurities in Si," Physical Review B

27 (12), 15 June 1983, p. 7641.

P0r_i01 Abstract. A theory of the major chemical trends in the

deep-energy levels of interstitial defects at the tetrahedral site in

semiconductors is developed, based on a simple, empirical tight-
binding scheme.

Akiko Kobayashi, Otto F. Sankey, and John D. Dow, "Chemical

trends for defect energy levels in Hg(1.x)CdxTe," Physical Review

B 25 (10), 15 May 1982, p. 6357.

Partial Abstract. The chemical trends for the energy levels of sp 3-

bonded substitutional defects in Hg(1-x)CdxTe are predicted and

appear to be in a general agreement with what is known about

defect levels in this small-band gap semiconductor alloy.
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F.D.M. Haldane and P.W. Anderson, "Simple model of multiple

charge states of transition-metal impurities in semiconductors,"

Physical Review B 13 (6), 15 March 1976, p. 2553.

Partial Abstract. The Anderson model for magnetic impurities
in metals is extended to semiconductors. It is shown how self-

consistent Hartree-Fock solutions can exist in the gap for many

different charge states of the impurity, providing the matrix

elements coupling the impurity and substrate are large enough.

Interstitials

S. Goettig, "Localized interstitial states in tetrahedrally bonded

semiconductors: The local-matrix approach," Physical Review B

42 (18), 15 December 1990, p. 11730.

Partial Abstract. An approach is presented for the localized states

due to sp-type interstitials in tetrahedrally bonded crystals.

S. Goettig and C.G. Morgan-Pond, "Formation mechanisms of

localized interstitial states in tetrahedrally bonded

semiconductors," Physical Review B 42 (18), 15 December 1990,

p. 11743.

Partial Abstract. The processes of formation of the localized

defect states due to tetrahedral and hexagonal sp-type interstitials

in sp-bonded materials are considered using a simple, tight-

binding-type local matrix approach.

J.T. Schick and C.G. Morgan-Pond, "Point defects with lattice

distortion in CdTe and HgCdTe," J. Vac. Sci. Tehnol., p. 1108

(1990).

Partial Abstract. Results of self-consistent, tight-binding

supercell calculations of electronic defect levels and relaxation

about defects for As, Sb, and Te interstitials in CdTe and for the

Hg vacancy in HgTe are presented.

C.G. Morgan-Pond and J.T. Schick, S. Goettig, "Interstitial total

energies and diffusion barriers in Hgl.xCdxTe," J. Vac. Sci. A7

(2), p. 354 (1989).

Partial Abstract. The previous simple model used to calculate

energy trends for the deep levels due to localized electronic states
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associated with interstitial and substitutional defects has been

extended to obtain estimates of the total energy for interstitials at
different sites in the lattice. These calculations have been

applied to predict the preferred tetrahedral site for Hg, Cd, In,

and Te interstitials in Hgl-xCdxTe, and to investigate a possible

diffusion path for these interstitials.

S. Goettig and C.G. Morgan-Pond, "Deep interstitial levels in

Hgl-xCdxTe," J. Vac. Sci. Technol. A6 (4), p. 2670 (1988).
Partial Abstract. The deep levels of indium and self-interstitials

(Hg, Cd, Te) in tetrahedral and hexagonal positions in

Hgl.×CdxTe are characterized and energy trends are calculated

within the defect-molecule approach.

Vacancies

Y. Marfaing, "Point defects and defect-impurity interaction in
CdxHgl-xTe and other II-VI semiconductors: Facts and

conjectures," J. Vac. Sci. Technol. B 10(4), Jul/Aug 1992, p. 1444.

Partial Ab_ra¢t. The properties of the cation vacancy in

CdxHgl-xTe are re-examined in the light of two experiments

(mass-loss measurements, positron lifetime) which point out to

a large concenration of vacancy-type defects compared to the

hole carrier density.

C. Blanchard and P. Girault, "Energy states of the cation
vacancy in II-VI compounds," Semicond. Sci. Technol. 6
(1991) A 127-A130. Printed in the UK.

Partial Abstract. We have calculated, in the frame of a

molecular model, the electronic states of the neutral, singly and
doubly charged cation vacancy. We show that the ground state

of a given charged vacancy is different depending on whether

spin-orbit interaction is smaller or greater than the Coulomb

repulsion potential.

M.A. Berding and A. Sher, A.B. Chen, "Vacancy formation and
extraction energies in semiconductor compounds," J. Appl. Phys.
68 (10),50640990).

Partial Abstract. Extraction energies for diamond and zinc-

blende semiconductor compounds and pseudobinary alloys are
calculated using a tight-binding cluster method, where the final
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state of the removed atom is in a free-atom state. For the

elemental semiconductors, vacancy (for Schottky defect)

formation energies, in which the final state of the removed

atom is on the surface, have been calculated.

. J. van der Rest and P. Pecheur, "Electronic structure of the

ideal vacancies in Ge, GaAs and ZnSe crystals," J. Phys.

Solid State 17. 85 (1984).

Partial Abstract. We study the electronic structure of the various

charge states of the ideal vacancies in Ge, GaAs and ZnSe crystals

in the tight-binding approximation.

NOTE: John-Teller (J-T) distortions can be important for vacant

lattice sites. The J-T effects says systems having a degenerate (not

due just to spin) ground state will spontaneously deform to lower the

symmetry and also lower the energy.

BVI. Concentrations

. Robert W. Jansen and Otto F. Sankey, "Theory of relative native-

and impurity-defect abundances in compound semiconductors

and the factors that influence them," Physical Review B 39 (5),

15 February 1989, p. 3192.

Partial Abstract. An ab initio pseudo-atomic-orbital method

[Phys. Rev. B 36, 6520 (1987)] is used to predict relative point-
defect abundances and the factors that influence them in a

number of III-V and II-VI compound semiconductors. The

concentrations are predicted from equilibrium statistical

mechanics by making use of the defect-formation energies.

From Sher in Review Section

Defect reaction Defection concentration Energy (eV)

EV. *+ HgTe _ VHg Te + Hgg

ETe_ + 2HgTe _ TeHg + 2Hgg

ETe , + HgTe 6-_ TelTe + Hgg

[VHg] = P_g KO exp(- EV., / kT)

[TeHg] = PH2g KOTe., exp(-ETe._ / kT )

[Tel] = P_g KOe, eXp(-ETe,/kT)

41

2.011"

4.53

4.96



EVT" + Hgg _ HgVTe

EHer. + 2Hgg _ HgHgTe

EHel-Hgg _ Hg 1

[VTe] = PHgKOTe exp(-EVTe / kT)

[HgTe ] = p2gKOHgT exp(-EHgT./kT)

[Hgl] = PHg KOg.eXp(-EHg,/kW)

3.12:_

-0.42

0.84, 0.98

w

m

w

m

=--
m

w

t Corrected experimental number from Vydyanath [13,14].

_: Calculated using a fight-binding Hamiltonian [17].

BVII. Experimental

lo G.M. Khattak and C.G. Scott, "Characteristics of deep levels in n-

type CdTe," J. Phys.: Condens. Matter 3 (1991) 8619-8634. Printed
in the U.K.

Partial Abstract. Deep-level transient spectroscopy has been

employed to study the defect states in n-type CdTe crystals

subjected to a variety of annealing treatments. Several defects

were interpreted as complex centres involving native defects

and impurities.

. M.C. Chen, M.W. Goodwin and T.L. Polgreen, "Deep levels in n-

type HgCdTe," Journal of Crystal Growth 86 (1988) 484-489,
North-Holland, Amsterdam.

Partial Abstract. Deep levels in both bulk and LPE (liquid phase

epitaxy) n-type Hg0.685Cd0.315Te have been studied by deep level

transient spectroscopy (DLTS) between 78 and 170 K using metal-

insulator-semiconductor (MIS) capacitors.

3. R.E. Kremer and W.B. Leigh, "Deep levels in CdTe," Journal of

Crystal Growth 86 (1988) 490-496, North-Holland, Amsterdam.

Partial Abstract. We have used a variety of complementary

techniques to study electronic trapping levels that are far from

either band edge CdTe. These deep levels play an important role

in determining the electrical properties of the material. Fifteen
different levels have been identified as related to these

impurities.

1 Charles W. Myles and P. Frazer Williams, R.A. Chapman and

E.G. Bylander, "Identification of defect centers in Hgl-xCdxTe

using their energy level composition dependence," J. Appl.

Phys. 57 (12), 15 June 1985, p. 5279.
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Partial Abstract. We have extended the Kobayashi, Sankey, and

Dow [Phys. Rev. B 25, 6367 (1982)] theory of deep levels in

Hgl-xCd×Te to include (vacancy, impurity) nearest-neighbor

pairs. As an example, we compare our theoretical predictions for

the dE/dx of levels associated with (vacancy, impurity) pairs to

the experimental slopes of the energy levels observed in deep

level transient spectroscopy by Jones, Nair, and Polla [Appl. Phys.

Lett. 39, 248 (1981)] and find that the theory lends support to

these workers' interpretation of their data.

Sher (miscellany)

Srinivasan Krishnamurthy and Arden Sher, "Electron mobility

in Hg0.78Cd0.22Te alloy," J. Appl. Phys. 75 (12), 15 June 1994.

Partial Abstract. The electron mobility in Hg0.78Cd0.22Te is

calculated by solving the Boltzmann transport equation with
Fermi-Dirac statistics and a full band structure. The calculated

values are in excellent agreement with experiments, and effects

of various traditional approximations are discussed.

Arden Sher, An-Ban Chen, W.E. Spicer and C.K. Shih, "Defects

influencing the structural integrity of semiconductors and their

alloys," J. Vac. Sci. Technol. A 3 (1), Jan/Feb 1985, p. 105.

Partial Abstract. The bond length and energy changes of the

constitutents of alloys relative to their pure crystal values are
calculated from an extension of Harrison's method. It is

demonstrated that the already weak HgTe bonds are destabilized

by adjacent CdTe, HgSe, but are stabilized by ZnTe.

A.B. Chen and A. Sher, "Sensitivity of defect energy levels to

host band structures and impurity potentials in CdTe," Phys.

Rev. B 32 (10), p. 6490.

Partial Abstract. The sensitivity of defect energy levels in

semiconductors to the host band structures and impurity

potentials has been studied for approximately 30 impurities in

CdTe using four different band-structure models. The

discrepancies in the defect levels between two different sets of

band structures and impurity potentials are found to range from

less than 0.1 eV to the whole band gap (1.6 eV).
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New Methods

Z.Q. Li and W. Potz, "Electronic density of states of

semiconductor alloys from lattice-mismatched isovalent binary

constituents," Phys. Rev. B 46 (4), 15 July 1992, p. 2109.

Partial Abstract. The electronic DOS is calculated numerically

via the recursion method. Results are presented for ZnSel.xTex.

Dieter J. Lohrmann and Lorenzo Resca, Giuseppe Pastori

Parravicini, and Ronald D. Graft, "Shallow and deep impurity

levels in multivalley semiconductors: A Green-function study

of a cubic model by the recursion method," Phys. Rev. B 40 (12),

15 October 1989, p. 8404.

Partial Abstract. We study by the recursion method impurity

levels in a cubic model semiconductor with parameters

corresponding to silicon. We also find that contributions to deep

levels from the Coulombic tail of the impurity potential are

substantially larger than the corresponding effective-mass-

equation (EME) binding energies and cannot be treated

perturbatively, at least for Z > 2.

Dieter J. Lohrmann and Lorenzo Resca, Giuseppe Pastori

Parravicini, and Ronald D. Graft, "Shallow and deep impurity

levels in multivalley semiconductors: A Green-function study

of silicon by the recursion method," Phys. Rev. B. 40 (12), 15

October 1989, p. 8410.

P0rtial Abstract. Shallow and deep impurity levels in silicon are

studied by a single Green-function formalism based on the

recursion method. The ability of this method to include

arbitrary-range potentials without increasing the computational
effort is illustrated. We first show that the recursion method

accurately reproduces the results of the model of Hjalmarson et

al. [Phys. Rev. Lett. 44, 810 (1980)] when only central-cell

potentials are included.
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Session K15-DCMP: DEFECTS IN SEMICONDUCTORS: MOSTLY WIDE BANDGAP

Mixed session, Wednesday afternoon, March 22, 14:30

Room J1, San Jose Convention Center
K15.09

Theory of Deep Defects in Narrow Gap Semiconductors. Weigang Li,

J.D. Patterson, Florida Institute of Technology -- We use a Green's function

technique to calculate the position of deep defects in the narrow gap

semiconductors mercury cadmium (MCT), mercury zinc telluride (MZT) and

mercury zinc sellenide (MZS). Substitutional (including antisite), and

interstitial (self and foreign) deep defects are considered. Relaxation effects

are included and they can be greater for the interstitial case than the

substitutional one. For all cases we find deep defects in the energy gap only

for cation site s-like orbitals or anion site p-like orbitals, and for the

substitutional case only the latter are appreciably effected by relaxation. For

substitutional impurities in MCT, MZT, MZS, we consider x (the

concentration of Cd or Zn) in the range 0.1 < x < 0.3 and also for both
substitutional and interstitial cases we do extensive calculations for x values

appropriate to a band gap of 0.1 eV. For the substitutional case we find that I,

Se, S, Rn, and N are possible defect candidates to form cation site, s-like levels

in MCT and ZN and Mg are for anion site, p-like levels. Similarly in MCT for

the interstitial case we find deep defect levels in the band gap for Au, Ag, Hg,

Cd, Cu, and Zn for the cation site, and N, Ar, O, and F for the anion site. For

the substitutional cases we have some examples where relaxation moves the

levels into the band gap, whereas for interstitial cases we have examples

where relaxation moves them out of the band gap. We find that the chemical

trends of defect levels in MZT is similar to that in MCT, however, the same

conclusion doesn't hold for MZS. The absolute accuracy of our results is

limited, but the precision is good, and hence the chemical trends are

accurately predicted. Supported by NASA Grant NAG8-941.
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D. Experimental and Theoretical Results

The most recent compilation of MCT work is C. Littler, "Deep Level

Centres in HgCdTe," in Properties of Narrow-Gap Cadmium based
Compounds," Edited by Peter Capper. INSPEC, the Institution of

Electrical Engineers, London, U.K. 1994 (pp. 250-253).

Although deep defects have been studied for some time, a detailed

understanding combining both theory and experiment is lacking in

many cases.

As mentioned in Littler many experimental techniques have been

developed to study deep levels. These include deep level transient

spectroscopy, luminescence, electron spin resonance, Fourier

Transform spectroscopy, and junction space-charge techniques. In

what follows we show the comparisons to experiment that we have
been able to do so far, and briefly review the calculations we have done.

w
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TABLE IV. Comparison of the predicted deep levels in MCT

with experimental data.

System

Deep levels

Experiment Theory f

!

w

Hgt _ (donor) O.7Egb (Ref.

Tei a (recom) c

TeHg (recom)

Cure (donor)

Cure (donor)

Aure (donor)

Aut a (donor)

18)

0.4Eg (Refs. 18 and 28)

0.4Eg (Refs. 18 and 28)

0.5Eg (Ref. 29)

Ec + 0.05 eV (Ref. 18)

0.8Eg (Refs. 18 and 29)

0. BEg (Refs. 18 and 29)

0.83Eg

E d+0.1 eV e

Ec +0.06 eV e

Ec +0.06 eV e

Ec +0.06 eV_

Ec + 0.04 eV e

0.9lEg

w

aThese are interstitial impurities.

bEg means energy band gap.
CRecombination center.

dE c means conduction-band edge.

_l'he difference between data and the theory result can be ex-

plained by the effects of charged-state splitting.

fThe x values for the experimental data here are in the range

0.2 < x < 0.3. For our calculations, x =0.22. As seen in Fig. 1,

the change in the energy levels for 0.2 <x < 0.3 is very small

and can be ignored for rough comparisons.

W

w

18C. E. Jones, I(. James, J. Merz, R. Braunstein, M. Burd, M.

Eetemadi, S. Hutton, and J. Drumheller, J. Vac. Sci. Technol.

A 3, 131 (1985).

28A. Sher, M. A. Berding, M. Van Schilfgaarde, and An-Ban

Chen, Semicond. Sci. Technol. 6, ( 1991).

29C. L. Littler, D. G. Seiler, and M. R. Loloee, J. Vac. Soc. A 8,

1133 (1990).
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Substitutional

Impurity

Anion Site p Impurity

Host MCT

Cd

Mg
Zn

Hg

Host MZT

Zn

Mg

Cd

Hg

Host MZS

Be

Ti

In

Hg
Zn

Cation Site s Impurity

Host MCT

Br

N

S

Rn

Se

I

Host MZT

N

S

Rn

Se

I

Neutral Atomic

Configuration

5s 2

3s 2

4s 2

6s 2

4s 2

3s 2

5s 2

6s 2

2s 2

6s26p 1

5s25p 1

6s 2

4s 2

4s24p 5

2s22p 3

3s23p 4

6s26p 6

5s25p 4

5s25p 6

2s22p3

3s23p 4

6s26p 6

5s25p 4

5s25p 6

49

Theory in Fraction

of Eg

CB

0.5

0.9

CB

0.7

0.3

CB

CB

0.6

0.4

0.3

CB

CB

0.01

0.14

0.52

0.55

0.87

0.92

-0.1

0.15

0.21

0.27

0.42
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w
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u

r

At

Substitutional

Impurity

Anion Site Impurity

Host MCT

Te

N

O

Ar

F

Host MZT

Te

N

O

Ar

F

Host MZS

Se

N

O

F

6s26p 4

Neutral Atomic

Configuration

5s25p 4

2s22p 3

2s22p 4

3s23p 6

2s22p 5

5s25p 4

2s22p 3

2s22p 4

3s23p 6

4s24p 4

2s22p3

2s22p 4

2s22p 5

5O

0.82

Theory in Fraction

of Eg

CB

0.7

0.6

0.62

0.24

CB

CB

CB

CB

0.5

CB

CB

CB

0.4
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Substitutional

Impurity

Cation Site s Impurity

Host MCT

Cd

Mg

Zn

Hg
Au

Ag

Cu

Host MZT

Zn

Mg
Cd

Hg
Au

Ag

Cu

Host MZS

Hg
Zn

Cd

Cu

Ag

Neutral Atomic

Configuration

5s 2

3s 2

4s 2

6s 2

6s 1

5s 1

4s 1

4s 2

3s 2

5s 2

6s 2

6s 1

5s 1

4s 1

6s 2

4s 2

5s 2

4s 1

5s 1
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Theory in Fraction

of Eg

0.77

CB

0.1

0.83

0.91

0.88

0.22

0.04

0.91

0.61

0.69

0.55

0.71

0.3

CB

0.14

0.84

0.34

CB
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E. Some Problems and Comments about Crystal Growth in

Microgravity

. Determine the effects of growth interface geometry on

defect generation.

°

3.

Determine the effect of solidification rate on defect

generation.

(1) and (2) are ambitious because defect generation is really

only empirically understood.

. Defects seem to be generated near the solid-liquid
interface and near the container wall. There, generation

seems to be influenced by fluid-fluid flows which may be

caused by temperature gradients and buoyancy caused
convection.

. For our materials, there is a wide separation of the
liquidus and solidus curves. This will give a large

segregation coefficient which will cause a difference in
composition if the fluid immediately ahead of the
interface depleted of solute from the nominal
concentration. In turn, this causes buoyancy and
convective flow mentioned in (4) as the HgTe rich

component which is rejected during solidification is more
dense.

° Crystals tend to grow with both radial and axial

inhomogeneity which can cause bandgap inhomogeneity.

g It is hoped that several of these problems will be reduced

in microgravity.

v
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F. Future Work

We only have calculated a few formation energies so far -- see Section

V where we have exhibited a substitutional impurity as an example.

We intend to do many more substitutional cases plus cases involving

the formation energies of interstitials and vacancies. For vacancies we

will start with a model which is close to the ideal vacancy model and

try to generalize it. We would also hope to look at formation energies

for different charge states.

With formation energies, we can make some predictions about what
defects are most likely to be generated in the crystal growth process.
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TABLE 1

Charge-state splittings of deep levels due to

substitutional impurities in MCT, MZT, and MZS with Eg = 0.1 eV

impurity

host MCT

anion site

Zn- -:

Zn-:

Zn0:

Zn+:

Zn++.

VS(eV) VP(eV) IAE s f /AEpl Deep Levels

p-like levels

17.02 10.92 1.28 0.73 3.3Eg

15.74 10.19 1.63 0.72 2.lEg

14.11 9.47 ....... 0.9Eg

12.39 8.70 1.72 0.77 -0.2Eg

10.67 7.96 1.63 0.74 -1.2Eg

v

Mg- -:

Mg-:

Mg0:

Mg+:

Mg++:

15.23 8.11 1.22 0.43 2.lEg

14.01 7.68 1.26 0.45 1.3Eg

12.75 7.23 ...... 0.5Eg

11.49 6.83 1.26 0.40 -0.2Eg

10.23 6.44 1.26 0.41 -0.9Eg

w

Cd" -:

Cd-:

Cd0:

Cd+:

Cd++:

20.71 11.73 1.56 0.71 3.5Eg

19.15 11.02 1.58 0.68 2.3Eg

17.57 10.34 ...... 1.2Eg

15.91 9.66 1.66 0.72 0.lEg

14.28 8.92 1.63 0.74 -1.2Eg
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m

Hg- -:

Hg':

Hg0:

Hg+:

Hg++:

cation site

S--"

S':

sO:

S+:

S++:

N-:

NO:

N+:

N++:

22.93

21.01

19.09

17.14

15.03

-17.23

-19.05

-20.64

-22.01

-24.42

-18.24

-21.55

-24.27

-28.64

-32.98

14.55

13.53

12.50

11.44

10.17

-8.67

-9.74

-10.68

-11.48

-12.54

-10.67

-11.99

-13.62

-15.87

-17.94

1.92

1.92

1.95

2.11

1.82

1.59

1.37

2.11

3.31

2.72

4.37

4.34

1.02

1.03

1.06

1.27

1.07

0.94

0.80

1.06

1.32

1.63

2.25

2.07

c.g.

C.B.

C.B.

C.B.

C.B.

s-like levels

1.7Eg

1.lEg

0.6Eg

0.lEg

-0.6Eg

1.7 Eg

0.9Eg

0.2Eg

-1.2Eg

-2.2Eg

Se- -:

Se-:

Se0:

Se+:

-15.22

-16.45

-17.77

-19.21

-6.07

-6.77

-7.97

-8.78

1.23

1.32

1.44

55

0.7

1.2

0.81

1.6Eg

1.2Eg

0.8Eg

0.3Eg
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m

Se++:

Br--"

Br-:

Br0:

Br+:

Br++:

host MZT

anion site

Zn- -:

Zn':

ZnO:

Zn+:

Zn++:

Mg--:

Mg-:

Mg0:

Mg+:

Mg++:

Cd- ":

Cd-:

Cd0:

-20.62

-28.06

-30.17

-32.30

-34.21

-35.72

15.92

14.66

13.43

12.45

10.71

14.18

13.28

12.56

11.33

10.37

16.33

15.09

13.86

-9.61

-15.15

-16.33

-17.59

-18.60

-19.50

11.07

10.37

9.71

9.27

8.56

8.5

8.04

7.72

7.0

6.32

11.23

10.54

9.86

56

1.41

2.11

2.13

-um

1.91

1.51

1.26

1.23

0.98

1.74

0.90

0.72

1.23

0.97

1.24

1.23

0.83

1.18

1.26

1.01

0.90

0.70

0.66

0.44

0.71

0.46

0.32

0.72

0.68

0.69

0.68

-0.8Eg

1.3Eg

0.7Eg

0.lEg

-0.4Eg

-0.8Eg

p-like

2.9Eg

1.7Eg

0.8Eg

0.0Eg

-1.2Eg

1.8Eg

1.0Eg

0.5Eg

-0.7Eg

-1.8Eg

3.7Eg

2.6Eg

1.5Eg

levels
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m

mu

Cd+:

Cd++:

host MZS

anion site

Zn--"

Zn':

Zn0:

Zn+:

Zn++:

Mg- -:

Mg-:

Mg0:

Mg+:

Mg++:

Be- -"

Be-:

Be0:

Be+:

Be++:

12.81

11.58

12.35

10.62

9.03

7.35

5.52

10.00

8.86

7.52

6.26

5.03

15.52

12.90

10.28

7.67

5.05

9.39

8.67

5.59

4.74

3.76

2.87

1.77

3.69

2.89

2.24

1.51

0.80

5.94

4.89

3.78

2.53

1.37

57

1.05

1.23

1.73

1.59

1.68

1.83

1.14

1.34

1.26

1.23

2.62

2.62

2.61

2.61

0.47

0.72

0.85

0.98

0.89

1.10

0.80

0.65

0.73

0.71

1.05

1.11

1.25

1.16

0.6Eg

-0.9Eg

p-like levels

C.B.

C.B.

1.9Eg

0.6Eg

-0.8Eg

c.g°

C.B.

1.7Eg

0.4Eg

-0.7Eg

2.7Eg

1.3Eg

0.2Eg

-1.lEg

-2.lEg
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TABLE 2

Charge-state splittings of deep levels due to

interstitial impurities in MCT, MZT, and MZS with Eg = 0.1eV

impurity VS(eV) VP(eV) IAEs I ]AEp I

host MCT

cation site

Zn++: -16.73 -12.70 2.34 0.97

Zn+: -14.39 -11.73 2.47 0.98

ZnO: -11.92 -10.75 .....

Zn-: -9.36 -9.77 2.56 0.98

Zn- -: -6.85 -8.83 2.51 0.94

Deep Levels

s-like levels

V.B.

-2.lEg

0.lEg

2.3Eg

C.B.

v

i
m

v

Mg++: -11.84 -8.73 1.34 0.69 -1.lEg

Mg+: -10.50 -8.04 1.30 0.63 -0.lEg

Mg0: -9.20 -7.41 ....... 1.0Eg

Mg-: -7.87 -6.74 1.33 0.67 2.lEg

Mg" ": -6.56 -6.06 1.21 0.65 3.3Eg

Cd++: -14.65 -10.64 1.74 0.96 -2.4Eg

Cd+: -12.91 -9.68 1.73 0.96 -1.2Eg

Cd0: -11.18 -8.72 ....... 0.8Eg

Cd-: -9.45 -7.75 1.73 0.97 2.3Eg

Cd- -: -7.73 -6.82 1.72 0.93 3.8Eg
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m
m

v

Hg++:

Hg+:

Hg0:

Hg-:

Hg" -:

Be++:

Be+:

Be0:

Be-:

Be- -"

host of MZT
cation site

Zn++:

Zn+:

Zn0:

Zl't-"

Zn I -.

Mg++:

Mg+:

Mg0:

-16.3

-14.14

-12.02

-9.85

-7.72

-19.92

-17.30

-14.68

-12.07

-9.46

-10.87

-10.01

-9.03

-8.12

-7.31

-9.87

-9.34

-8.72

-12.01

-10.86

-9.70

-8.56

-7.41

-13.4

-12.3

-11.2

-10.1

-9.0

-9.02

-8.45

-7.81

-7.11

-6.63

-7.21

-6.67

-6.25

2.16

1.92

2.17

2.13

2.62

2.62

w_

2.61

2.61

0.86

0.98

-m-

0.70

0.48

0.53

0.62

59

1.15

1.16

--n_

1.14

1.15

1.10

1.11

1.10

1.10

0.57

0.64

0.91

0.81

0.54

0.42

-2.3Eg

-0.6Eg

0.9Eg

2.6Eg

C.B.

V.B.

-1.8Eg

-0.lEg

1.8Eg

C.B.

s-like levels

V.B.

-2.3Eg

-0.lEg

1.9Eg

C.B.

V.B.

-0.7Eg

0.9Eg
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Mg-: -8.05 -5.77 0.67 0.48 1.8Eg

Mg- -: -7.33 -5.16 0.72 0.61 C.B.

Cd++: -10.68 -6.88 0.93 0.65 V.B.

Cd+: -9.75 -6.23 0.89 0.61 -1.5Eg

Cd0: -8.86 -5.62 ....... 0.6Eg

Cd-: -8.02 -5.10 0.84 0.52 2.3Eg

Cd- -: -7.34 -4.73 0.68 0.33 C.B.

Hg++: -11.05 -8.11 1.23 0.68 V.B.

Hg +: -9.82 -7.43 1.02 0.65 -1.6Eg

Hg0: -8.80 -6.78 ........ 0.7Eg

Hg': -7.98 -6.22 0.82 0.55 2.lEg

Hg- -: -7.21 -5.74 0.77 0.48 C.B.

host of MZS s-like levels

cation site

Zn + +: -14.43 -10.68 1.82 1.12 V.B.

Zn+: -12.61 -9.71 1.79 0.96 -1.5Eg

Zn0: -10.82 -8.75 ....... 0.0Eg

Zn-: -9.21 -7.67 1.61 0.87 1.7Eg

Zn- -: -7.65 -6.71 1.56 0.80 C.B.

Mg++: -9.81 -6.66 1.27

60

0.62
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Mg+:

Mg0:

Mg':

Mg" ":

Cd++:

Cd+:

Cd0:

Cd-:

Cd" -:

Hg++:

Hg+:

Hg0:

Hg-:

Hg- -:

Be++:

Be+:

Be0:

Be-:

Be- -:

-8.54

-7.23

-5.97

-4.76

-11.68

-9.92

-8.18

-6.47

-4.77

-10.92

-9.14

-7.42

-5.86

-4.22

-14.98

-12.80

-10.61

-8.47

-6.26

-6.04

-5.34

-4.64

-4.06

-7.54

-6.62

-5.72

-4.84

-3.76

-8.91

-7.86

-6.70

-5.62

4.51

-11.04

-10.03

-9.00

-8.03

-7.06

1.31

1.27

1.21

1.76

1.64

1.71

1.60

1.78

1.72

1.66

1.62

2.18

2.19

2.14

2.21

61

0.70

0.7O

0.58

0.96

0.90

0.98

0.88

1.05

1.16

1.08

1.09

1.01

1.03

0.97

0.97

-0.lEg

1.2Eg

2.5Eg

C.B.

-2.6Eg

-1.3Eg

0.9Eg

2.2Eg

C.B.

V.B.

-1.9Eg

0.0Eg

1.8Eg

C.B.

V.B.

-2.7Eg

-0.1 Eg

1.8Eg

C.B.



w

=__

m

M

m.

TABLE 3

Comparison of charge-state splittings for x=0.2, 0.3, and 0.5 in MCT

impurity deep levels (anion site, p-like) AE

x=0.2 x=0.3 x=0.5 x=0.2 x=0.3 x=0.5

Zn- -: 3.3Eg 3.3Eg 3.4Eg 0.12 0.11 0.11

Zn-: 2.lEg 2.2Eg 2.3Eg 0.12 0.13 0.13

Zn0: 0.9Eg 0.9Eg 1.0Eg .........

Zn+: -0.2Eg -0.2Eg -0.lEg 0.13 0.13 0.11

Zn++: -12.Eg -1.lEg -1.0Eg 0.10 0.11 0.09

Mg--: 2.lEg 2.lEg 2.2Eg 0.08 0.08 0.09

Mg-: 1.3Eg 1.3Eg 1.3Eg 0.08 0.08 0.07

Mg0: 0.5Eg 0.5Eg 0.6Eg ..........

Mg+: -0.2Eg -0.2Eg -0.lEg 0.07 0.07 0.07

Mg++: -0.9Eg -0.9Eg -0.8Eg 0.07 0.07 0.07
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CHARGE STATE SPLITTING IN ONE DIMENSION
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Figure A

The empirical parameters
chosen for this plot using
the Haldane-Anderson model

are 13-0.7, u-_b/(.6V),
w-13a'/(.75V),V--SeV, b--4.3,

and a'=11eV.



CHARGE STATE SPLITTING

L_

CS in eV

1

K

ro

w

m

m

Figure B

This is an atom like model
with a Coulomb potenttial
short range potential of
range ro (which ranges from

6 to 12 Angstroms as the
index goes from 1 to 6). K is
the relative dielectric constant.

The depth of the potential is
5 eV.



Deep Levels of substitutional Impurities in MCT
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Deep Levels of substitutional Impurities in MZS

L;J

r_

=_

w

H

Q.

m

>,

z_

C

0.3

0.2

0.1

0.0

-0,1

-0.2

0.0

(anion site, p-like levels)

Be

J

Mg

Zn o

_M og

Be"

Zn'_

Mg _

..___..zn _+

__..-. Be+

charge-state splittlngs

0.

C.B,

V.Bo

B

Figure 5



Deep Levels of Interstitial impurities in MCT
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Deep Levels of Interstitial impurities in MZT
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